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 Abstract: Transition metals catalyzed C-H bond activation reactions have appeared as an emerg-

ing field to introduce different functional groups in the inactivated saturated and unsaturated C-H 

bonds. C-S and C-Se bond constructions in aromatic scaffolds are very interesting due to the im-

portant applications of organochalcogen reagents in pharmaceutical chemistry and the material 

world. The introduction of sulphur or selenium moiety to an inert C-H functionality of an arene 

under transition metal catalysis has become one of the prime challenges and targets in recent 

years. In this perspective, various transition metals such as Cu, Ni, Co, Pd, Rh, Ru etc. have been 

extensively studied. Aromatic arenes owning bearing suitable directing groups appeared as the 

most promising coupling partners to selectively synthesize differently substituted aryl sulfones 

and aryl sulfides/selenides. The synthetic strategies were highly convenient owing to the regiose-

lectivity of products, broad substrate scope, mild reaction conditions and excellent functional 

group tolerance. The current review article comprehensively summarizes the extent of C-S/Se 

bond formation via transition metal-catalyzed C-H bond activation with the assistance of directing 

groups to govern the site selectivity. 
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1. INTRODUCTION 

 Transition metals promoted catalytic reactions have 
reached a paramount level of sophistication and have been 
enriched by the incorporation of chalcogen atoms into acti-
vated C-H bond functionalities, emerging as outstanding 
strategies in modern organic synthesis.[1-8] In addition to 
the significant advancements in organometallic chemistry, 
notable innovations have been achieved in the area of C-Z (Z 
= S, Se) bond constructions as these structural motifs de-
mand massive applications in pharmaceutical chemistry, [9, 
10] material science[11, 12] and fluorescence spectroscopy 
[13, 14]. Due to prevalent structural fragments, acceptable 
stability and excellent functionality, the C-H bond in the 
aromatic ring has been extensively analysed in organic 
chemistry [15-17]. In the past few years, researchers have 
successfully employed transition metal catalysis to achieve 
C(sp2)-H bond functionalization reactions such as C-H halo-
genation[18, 19] oxygenation [20, 21] acylation [22] and 
alkylation [23, 24]. Synthesis of aryl-substituted chalcogeni-
des via traditional methods involves harsh reaction condi-
tions, poor functional group tolerance, elevated reaction 
temperature and affording minimum yields. However, transi-  
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tion metal-catalyzed direct transformation of an unreactive 
C(sp2)-H functionality to a C-chalcogen framework has 
emerged as a powerful tool to realize enormous promising 
conversions as these methodologies require mild reaction 
conditions, step and atom economy, sustainable and envi-
ronmentally benign green protocols.[25-27] The ease of se-
lective cleavage of a particular C-H bond of arenes is over-
whelmed by the presence of directing groups and assistance 
of coordinating ligands which directs a transition metal atom 
into the close proximity of a specific C-H centre.[28-30] 
Besides, the strong coordinating nature of the chalcogen at-
oms (S and Se) has enabled them to get incorporated into an 
inert C-H motif. The excellent regioselectivity, site-
selectivity, wider substrate scope and outstanding functional 
group compatibility of the arenes undergoing C-H bond 
functionalization reactions under standard protocols have 
been at the forefront of our current investigations.  

 In the past few years, activated C-H bond functionaliza-
tion reactions of arenes under metal- and solvent-free proto-
cols have extensively been employed to highlight the signifi-
cant contribution to the sustainable development of green 
chemistry [31-34]. It is worth mentioning that the advance-
ment of novel and practical catalytic methods involving C-
S/Se bond constructions through transition metal-promoted 
direct C-H activation is still less explored in comparison to 
C-C, C-N and C-O bond functionalization reactions. In con-
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trast to conventional transition metals assisted cross-coupling 
transformations, the strategy for direct C-H functionalization 
is notably convenient because it avoids prefunctionalized 
substrate, minimizes poisonous waste production, and al-
ways requires mild reaction conditions, step and atom-
economic approach, eco-friendly and greener techniques.[26, 
27, 35-38] Although an impressive number of catalytic ap-
proaches have been designed to focus on this issue, the most 
popular one involves the use of reactants anchored with var-
ious recognized directing groups (DGs) which represents an 
excellent methodology to achieve unique selectivity and re-
activity patterns [39-43]. The role of a directing group is not 
only to promote the C-H activation but also to control the 
chemo- and regioselectivity of the reaction. In addition, the 
substrate acting as pincer-type ligand is found to stabilize the 
transition metal complexes.  

 It is of note that in recent times, the chemistry of C-H 
activation of arenes has been enriched by cobalt, [44, 45] 
nickel [46] copper [47, 48] ruthenium [49] rhodium [50, 51] 
and palladium [52] metal-based catalytic systems. The or-
ganometallic complexes of these transition metals have 
emerged as omnipresent and efficient catalysts for C-H bond 
functionalization and the subsequent construction of diversi-
fied carbon-chalcogen bonds. Indeed, the 3d and 4d transi-
tion metal catalysts by virtue of their electronic properties 
could complement the C-H functionalization with reference 
to activity, selectivity, substrate scope and functional group 
compatibility. This idea appears to be interesting and attrac-
tive from an eco-friendly and atom-economical viewpoint. 
Nevertheless, with these advantages, the development of 
viable and innovative catalytic protocols using 3d and 4d 
transition metals is still a growing field. 

 Based on the pioneering studies, although a plethora of 
transition metals mediated chelation guided ortho-directive 
C-H bond functionalization reactions of arenes has been 
documented in the literature, however, reports on meta- or 
para-directive C-H activations would remain comparatively 
less unveiled and are far restricted to a limited approach. The 
authors, with their long-standing curiosity, intended to ex-
plore a current comprehensive and organized overview for 
the construction of selective C-S/C-Se bond via transition 

metal promoted directing group assisted C-H bond activation 
of arenes. In this perspective, the catalytic transformations 
employed herein are subjected to be advantageous and envi-
ronmentally friendly, which essentially involve the use of 
cost-effective, non-poisonous, commercial-grade reagents 
and environmentally benign solvents.  

2. C(SP2)-H SULFENYLATION/SULFONYLATION 
OF ARENES 

 In the last decade, researchers have witnessed the decora-
tion of numerous synthetic methods for site-selective sul-
fenylation and/or sulfonylation of aromatic compounds via 
activated C-H bond functionalization reactions. The classical 
approach involving chelation-assisted C-H sulfenylation is 
less unveiled, probably because the organosulfur reagents are 
supposed to act as a catalyst poison [53, 54]. However, sig-
nificant innovations have been developed by various re-
search communities to enrich this area to a great extent. In 
the forthcoming section, the authors made an endeavour to 
focus on the selective sulfenylation and/or sulfonylation at 
different positions of aromatic arenes.   

2.1. Ortho Selective C-H Sulfenylation/Sulfonylation 

 Transition metal promoted direct thiolation at activated 
C(sp2)-H centres of directing groups anchored aromatic 
arenes emerged as the most powerful and practical approach 
for the preparation of well-functionalized aryl sulfide 
frameworks [55, 56]. In view of that, Iwasaki et al. designed 
and devised 2-phenylpyridine derivative and diaryl disulfide 
in the presence of copper and palladium co-catalysis 
(Scheme 1) [57]. It was worth noting that the addition of 
phosphine ligand accelerated the catalytic route and influ-
enced the reaction yields. A variety of desired monothiolated 
products were afforded by 2-phenylpyridines possessing 
various electron-rich and electron-deficient substituents at 
ortho and para positions. The catalytic path was anticipated 
to follow a Pd(II)/Pd(IV) mechanism. A detailed study on 
H/D exchange experiment as well as the kinetic isotope ef-
fect (KIE), also indicated that the cleavage of the C-H bond 
was not involved in the rate-determining step. 
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Scheme 1. Pd-promoted direct ortho sulfenylation of arenes with diaryl disulfides. 



Chalcogent of Arenes and Heteroarenes Current Organic Synthesis, XXXX, Vol. XX, No. XX   3 

R1 = Functional Groups

N

R1

R2SSR2

N

R1

H

S

[RhCp*Cl2]2 (5 mol%)

AgOTf (20 mol%)

Cu(OAc)2 (50 mol%)

N

SF
Ph

R2

N

S
Ph

N

S
Ph

Me

CHO

N

S
Ph

N

S

N

S

Cl Me

OMe

t-AmOH, 60oC, 36h

PhSSPh

Proposed mechanism

[Rh(II)Cp*](OTf)2

[Cp*RhCl2]2

AgOTf

HOTf

2P

N Ph

2P =

N

Rh
Cp*

OTf

2A

N

SPh

2Q =

2Q

N

Rh
Cp*

SPh

2D
[PhSRhCp*]OTf

Rh(I)

2PHOTf

reductive
elimination

2Q

oxidant

2B

N

Rh(V)Cp*OTf

SPh

SPh

2C
reductive
elimination 2Q

oxidative
addition

path b

pa
th

 a

64 84%

2a 2b 2c

2d 2e 2f

2

 

Scheme 2. Rhodium catalyzed ortho mono-thiolation of 2-phenyl pyridines. 

 Yang et al. developed an easy and practical rhodium-
promoted catalytic route to derive aryl thioethers via direct C-
H bond activation of directing group anchored arenes [58]. 
Addition of AgOTf as an additive and Cu(OAc)2 as an oxi-
dant was found to improve the reaction yield remarkably. The 
substrates tolerated well with various -deficient and electron-
releasing substituents at different positions of the phenyl ring 
were efficiently coupled with aryl sulfides, resulting in the 

desired ortho sulfenylated products in good to excellent 
yields (Scheme 2). Besides, the aryl sulfides, irrespective of 
the electronic effects of the functional groups on the phenyl 
ring, displayed faster reaction rates. The site selectivity, 
broader substrate scope, functional group compatibility and 
optimal reaction protocol also enriched the phenomenon of 
direct C(sp2)-H sulfenylation. 



4  Current Organic Synthesis, XXXX, Vol. XX, No. XX  Mahata et al. 

 With a view to throwing some light on the direct sul-
fenylation of arenes via activated C(sp2)-H bond functional-
ization, Reddy and co-workers assembled bidentate directing 
group linked benzamide derivatives and diaryl disulfides to 
synthesize ortho sulfenylated thioethers in exclusively supe-
rior yields [59]. The authors also analysed the screening of 

solvents and bases and found that the presence of Ni(II) cata-
lyst in combination with PPh3 ligand and Cs2CO base facili-
tated the sulfenylation reaction predominantly. Diaryl disul-
fides bearing electron releasing and withdrawing substitu-
ent(s) afforded desired ortho selective coupling products in 
excellent yields (Scheme 3). 
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Scheme 3. Nickel catalyzed direct C-H activation of benzamide derivatives. 
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 Müller and Ackermann introduced a ligand-free nick-
el(II) catalytic route to study the thiolation of pyrimidyl 
group anchored anilines via direct C-H bond activation under 
ligand-free situation (Scheme 4) [60]. The site-selective or-
tho sulfenylation proceeded smoothly when well-tolerated 
anilines were subjected to react with diaryl disulfides. Nota-
bly, disulfides possessing electron donating andelectron-
withdrawing groups in the phenyl ring preferred ortho-
sulfenylation with highly regioselective yields. A detailed 
study on reaction mechanisms argued in favor of a single 
electron transfer (SET) type process and C-H bond activation 
in the rate-limiting step. The efficiency of this optimized 
protocol in C-H functionalization could be rationalized in 
terms of ample substrate scope, regioselectivity, and excel-
lent functional group tolerance. 

 The 7-azaindole, a unique structural motif, widely exists in 
various pharmaceutical agents and natural products.[61, 62] In 

2018, Deb and research group reported rhodium metal-
catalyzed direct and selective thiolation at activated C(sp2)-H 
bond functionalization for the synthesis of ortho thiolated 
azaindole derivatives in the presence of silver triflate as an 
additive and silver carbonate as an oxidant in 1,4-dioxane 
solvent under nitrogen atmosphere [63]. C-H thio-
functionalization of N-aryl azaindole at ortho position could 
remarkably be achieved when the substrate interacted with 
diphenyl disulphide under standard condition. This opti-
mized reaction protocol furnished a variety of ortho products 
with desirable quantities (Scheme 5). Moreover, azaindole 
derivatives possessing electron-deficient groups like chloro 
and cyano at the C-3 position resulted good to excellent 
yields. The catalytic protocol was also successful with 
diselenides performing C-H selenylation in the same sub-
strates.  
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Scheme 4. Thiolation of arenes with differently substituted diaryl sulfides catalyzed by nickel.  
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Scheme 5. Rhodium catalyzed thiolation of N-aryl azaindoles. 
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 Inspired by the report of the Deb group, the Duan group 
described an explicit study with respect to copper-mediated 
ortho-C-H sulfenylation of N-aryl-7-azaindoles [64]. A wide 
variety of N-aryl-azaindole derivatives possessing electron-
rich and electron-poor substituents underwent smooth cou-
pling with disulfides in the presence of benzoic acid as an 
additive under heating at 140oC in mesitylene (Scheme 6). 
This catalytic approach displayed ample substrate scope, 
high conversion efficiency and good compatibility with dif-
ferent substituents. Based on various evidential facts, the 
authors proposed a SET-type mechanism where the com-
plexation of 7-azaindole with Cu(OAc)2 in the presence of 
C6H5COOH led to the formation of Cu(II) species 6A. Sub-
sequently, the sulfenyl radical obtained from the homolytic 
cleavage of Ph2S2 oxidized 6A to deliver Cu(III) intermedi-
ate 6B, which, after reductive elimination, furnished the de-
sired ortho-selective product along with Cu(I) species. Oxi-

dation of Cu(I) regenerated the active catalyst Cu(OAc)2 to 
run the next cycle. 

 Deng and his research colleagues demonstrated a copper-
assisted selective and direct ortho sulfenylation of ben-
zamide derivatives through the activation reaction of inert C-
H bond functionalities (Scheme 7) [65]. The synthetic proto-
col involving benzamides with broad substrate scope and 
well-functional group tolerance reacted smoothly with disul-
fides and afforded desired ortho-sulfenylated products in 
moderate yields. Careful screening on the solvents and cata-
lysts indicated that dimethyl sulfoxide (DMSO) and stoichi-
ometric quantity of Cu(OAc)2 were the best choices to 
monitor the reaction pathway. Various electronic substitu-
ents attached to the directing groups anchored benzamides 
affected the percentage of yields remarkably. Control exper-
iments also revealed the preferential rate of reaction between 
electron poor benzamides and disulfides. 
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Scheme 6. Cu(II) mediated direct sulfenylation of N-aryl azaindoles with disulfides.  
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 Wu and co-workers assembled aryl amides and elemental 
sulphur to reveal the cobalt-catalyzed synthesis of aryl sul-
fides through C(sp2)-H bond activation at 110oC under N2 
atmosphere (Scheme 8) [66]. The highly chemoselective 
catalytic process under mild reaction conditions followed a 
cobalt-sulphur free radical pathway where elemental sulphur 
played a key role in the reaction. The optimized protocol was 
substantially affected by both electronic and steric factors of 
the substituents attached to the benzene ring. A library of 
symmetrical diaryl sulfides was attained in moderate yields. 
The authors have extensively investigated that a combination 
of cobalt acetate, sodium bicarbonate and elemental sulphur 
was essential for the catalytic transformation. 

 Azoarenes, an important class of chromophores derived 
from natural products, are found to be practically act as organ-
ic dyes, metal ion indicators, and molecular photoswitches 
[67-73]. With view of that, an ortho-selective C-H sulfonation 
of azobenzene derivatives employing palladium catalyst under 
base and ligand-free situation was reported by Zhang and co-
workers [74]. The catalytic protocol was greatly influenced by 
the electronic nature of the substituents attached to the phenyl 
ring of aryl sulfonyl chloride. A series of sulfonated azoben-

zenes were afforded in excellent quantity. The authors have 
also illustrated addition and reductive elimination-based 
mechanistic pathways to unveil the catalytic transformation 
(Scheme 9). As shown in the mechanism, the interaction of 
azobenzene with Pd(OAc)2 provided the Pd-species 9A via 
ortho-palladation. Thereafter, 9A reacted with sulfonyl radical 
to generate an active species 9B, which then underwent reduc-
tive elimination to deliver the desired product via regeneration 
of active catalyst Pd(OAc)2 for the next cycle. 

In 2018, an ortho-selective C-H arylsulfonylation of 2-
arylpyridines using halogen-containing benzenesulfonyl 
chloride with the assistance of a palladium catalyst was re-
ported by Sasmal and research colleagues [75]. Of particular 
note is that the use of Ag2CO3 in addition to Cu(OAc)2 addi-
tive and a stoichiometric amount of Pd(OAc)2 was found to 
improve the chemoselectivity of the products in remarkably 
good yields. The scope of both 2-arylpyridines and benzene-
sulfonyl chlorides was broad, with bromo, nitro, trifluoro 
methyl and chloro-substituted pyridines being excellently 
tolerated (Scheme 10). Under optimized protocols, no cleav-
age of C-halogen moiety on both coupling partners was truly 
investigated by the authors. 
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Scheme 8. Cobalt catalyzed C-H functionalization of arenes. 
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Scheme 9. Palladium assisted C-H sulfonylation of azobenzenes. 
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Scheme 10. Palladium catalyzed C-H sulfonylation of 2-arylpyridines with azobenzenes. 

2.2. (Halo)-Benzenesulfonyl Chlorides 

The research community has been focusing great attention 
on the phenol derivatives possessing diaryl sulfides as these 
structural frameworks are extensively employed to cure HIV, 
heart diseases and cancer [76-79]. Inspired by the fact, the 
Miura group described a direct ortho-selective sulfenylation 
of phenol derivatives using diphenyl disulfides as the cou-
pling partners aided by phenanthroline auxiliary (Scheme 
11) [80]. The coupling reaction was conducted smoothly in 
the presence of the catalytic amount of Cu(OAc)2 or CuTC 
(TC = 2-thiophenecarboxylate) in DMF solvent at 70oC 
whereby various phenolic compounds were efficiently cou-
pled to afford both mono and dithiolated products with ex-
cellent regioselectivities. Moreover, this synthetic protocol 
was highly compatible with phenol derivatives and thus al-
lowed for rapid synthesis of aryl thioethers. 

In 2018, Li and Wang postulated a direct C(sp2)-H sulfenyl-
ation of aromatic amide derivatives with diaryl disulfides 
[81]. After scrutinizing different cobalt catalysts, CoBr2 was 
found to be the potential candidate to drive the catalytic 
transformation. It is pertinent here to note that the synthetic 
protocol tolerated both electron rich and electron-poor sub-
stituents on aryl sulfides as well as on the phenyl ring in 
benzamides which offered an easy and straightforward strat-
egy for the synthesis of ortho-thiolated yields (Scheme 12). 
This sulfenylation strategy was also applied successfully to 
achieve a potential antipsychotic agent called quetiapine. 
The authors proposed a free radical-type mechanism to be 
involved in the catalytic cycle. Firstly, the coordination of 
benzamide with CoBr2 furnished the active species 12A 

which, on oxidation by DTBP delivered Co(III) species 12B. 
Now, 12B underwent reversible cobaltation leading to the 
formation of a cobalt cycle intermediate 12C. Subsequently, 
12C coupled with thioether free radical to afford Co(IV) 
intermediate 12D. Finally, 12D, upon reductive elimination 
followed by protonation, delivered the desired sulfenylated 
product and led to the regeneration of CoBr2 for the next 
catalytic cycle. 

 The Song group successfully employed p-Tosylmethyl 
isocyanide (TosMIC) as sulfonating agent and pyridine-N-
oxide (PyO) as a removable auxiliary to address the ortho 
selective C(sp2)-H sulfonation of benzamides.82 NaHCO3 in 
concert with a stoichiometric amount of copper salts showed 
the better performance to promote the reaction and interest-
ingly, a library of ortho-sulfonyl-substituted benzamide de-
rivatives was documented with moderate to high yields 
(Scheme 13). The reaction revealed a kinetic isotope effect 
(KIE) for deuterium-substituted benzamide and the fact indi-
cated the involvement of ortho-C-H bond cleavage in the 
rate-controlling step. In addition, the authors also anticipated 
the mechanism where complexation between benzamide 
analogue and Cu(OAc)2 followed by ligand-exchange deliv-
ered the species 13A. Now, 13A underwent intramolecular 
C-H bond activation to form Cu(II) complex 13B. Subse-
quent oxidation of 13B by Cu(OAc)2 and tert-butyl hydrop-
eroxide (TBHP) afforded a pincer type Cu( III) species 13C. 
The sulfonyl anion formed by the dissociation of TosMIC 
reacted with 13C to furnish the crucial intermediate 13D, 
and finally 13D, after reductive elimination released the de-
sired product along with the Cu(I) species. 
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2.3. Meta Selective C-H Sulfenylation/Sulfonylation 

 The catalytic system owning both Ru(0) and Ru(II) com-
plexes has unveiled a tremendously mounting topic of re-
search in ruthenium-mediated versatile C-H bond functional-
ization approaches[82, 83, 84 ]In view of that, in 2011, 
Frost’s research group assembled 2-phenylpyridine deriva-
tives and aryl sulfonyl chloride to derive meta-selective aryl 
sulfones in acetonitrile medium [85]. The ruthenium promot-
ed meta-selective C-H sulfonation involved chelation-
mediated cyclometalation where the formation of Ru-Caryl 
σ-bond facilitated the para-directing effect. The coupling 
reaction was greatly influenced by the electronic substituents 
attached to the phenyl ring of both substrates. A library of 
sulfones meta to the chelating auxiliary resulted in moderate 
isolated yields (Scheme 14). This chelation-induced synthet-
ic protocol was found to be beneficial owing to its regiose-
lectivity and ample substrate scope. Cleavage of the C-H 
bond in the rate determining step was also truly guided by a 
detailed survey of the kinetic isotope effect. 

 The intriguing results favouring radical trapping experi-
ments inspired the Frost group to revise the previously hy-
pothesized aromatic electrophilic substitution (SEAr) mech-
anism for meta-directive sulfonylation in 2016 [86]. The 
radical-induced catalytic pathway provided fundamental 

insights into each step by the isolation and characterization 
of active meta-sulfonated product, which showed evidence 
for preferential para-selectivity to the RuAr‒C bond. The 
possibility of the SEAr pathway was precluded when nega-
tive aspects were caused with several sulfonating agents. 
Besides, the detrimental effects on the sulfonation reactions 
employing radical scavenger (2,2,6,6-Tetramethylpiperidin-
1-yl)oxyl (TEMPO) were argued in favor of the reaction to 
proceed through the generation of a tosyl radical. 

 Li et al. documented the synthesis of aryl sulfones via 
ruthenium-catalyzed meta directive C(sp2)-H sulfonation of 
azoarenes by aryl sulfonyl chloride in the presence of 
Cs2CO3 base under N2 atmosphere (Scheme 15) [87]. 
Screening of solvents would indicate that acetonitrile was a 
potential candidate for this catalytic transformation. A plau-
sible catalytic route was predicted to explore the Ru(II) pro-
moted electrophilic aromatic substitution reaction as depict-
ed in the scheme. Ortho C-H ruthenation of azoarene by 
[Ru(p-cymene)Cl2]2 yielded a cycloruthenated species 15A, 
which upon sulfonation by ArSO2+ ion at the para position 
of CAr-Ru linkage led to the formation of active species 
15B. Deprotonation of 15B provided 15C, which underwent 
proto-deruthenation to furnish the desired meta-selective 
sulfonated product. 
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Scheme 11. Cu-promoted ortho-selective C-H sulfenylation of phenolic compounds by diphenyl disulfides. 
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Scheme 12. Co(II) mediated direct C-H sulfenylation of benzamides. 
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Scheme 13. Copper-catalyzed direct sulfonylation of benzamides.  
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Scheme 14. Ruthenium promoted meta sulfonylation of 2-phenylpyridines.  
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Scheme 15. Ruthenium(II) mediated meta directive sulfonylation of azoarenes. 

 The research group of Yang explored ruthenium(II) me-
diated synthesis of meta-selective arylsulfonyl arenes by 
employing 2-phenoxy pyridine and arylsulfonyl chloride as 
coupling partners [41]. This catalytic protocol tolerated vari-
ous electron rich as well as electron-poor substituent on aryl-
sulfonyl chlorides and thus offered a bunch of desired meta-
sulfonylated products in a remarkably higher percentage of 
yields (Scheme 16). A detailed mechanistic survey unveiled 
that the catalytic path furnished the intermediate 16A via an 
ortho-C(sp2)-H ruthenation. Thereafter, aromatic electro-
philic substitution by arylsulfonyl chloride at the C-H centre 
para to the Ru-CAr σ-bond led to the generation of an active 

species 16B, which underwent oxidative addition resulted Ru 
(IV) species 16C. 16C upon reductive elimination pathway 
gave Ru(II) intermediate 16D via releasing the key product. 
The effect of chelation enhanced directing group, excellent 
functional group compatibility and high conversion efficien-
cy of this catalytic system also facilitated the C-H sulfonyla-
tion strategy. 

2.4. Para Selective C-H Sulfenylation/Sulfonylation 

 In contrast to significant improvements in transition met-
als-assisted direct ortho- and meta-selective C-H functionali-
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zation, methodologies for para-selective C-H thiolation/ 
sulfonation remain less explored. 

 Zeng and research colleagues devised and decorated an 
easy and excellent copper promoted catalytic route for the 
para-selective sulfonylation of quinoline scaffolds [88]. The 
bidentate chelating group assisted C(sp2)-H sulfonation reac-
tion under optimized protocol proceeded well in concert with 
copper(I) catalyst and K2CO3 base at 100oC heating under 
argon atmosphere (Scheme 17). A combined study of exper-
imental and density functional theory (DFT) calculations 
revealed that an excellent functional group tolerance also 
facilitated high conversion efficiency with moderately good  

yields. To explore the feasibility of the catalytic protocol, the 
authors also envisaged both intramolecular single electron 
transfer (SET) and intermolecular SET type mechanism. 
Firstly, 17A underwent intermolecular SET to TsCl to fur-
nish a Cu(II) species 17B and tosyl radical whereas subse-
quent intramolecular SET from 17A resulted Cu(II) an-
chored anion radical 17C. Again, addition of tosyl radical 
with 17B led to the formation of a radical intermediate 17D 
which on deprotonation generated 17E. Now, a single elec-
tron transfer from heterocyclic anionic moiety to Cu(II) cen-
tre was initiated to generate Cu(I) species 17F and eventually 
the catalytic cycle came to an end via the release of the final 
product (17Q). 
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Scheme 16. Ru(II) catalyzed meta-selective sulfonylation of 2-phenoxy pyridine with arylsulfonyl chloride.  
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Scheme 17. Copper-mediated C-H sulfenylation of quinoline scaffolds with aryl sulfonyl chloride. 

2.5. C(sp2)-H Selenylation of Arenes 

 Traditional catalytic methodologies for C-Se bond con-
struction via transition metals mediated direct selenylation of 
inert C-H functionalization of arenes are in high demand 
since aromatic frameworks bearing selenium moiety could 
be recognized to exhibit viable biological, medicinal and 
pharmaceutical activities [89-92]. 

2.6. Ortho Selective C-H Selenylation 

 Significant advances in transition metal assisted seleno-
ether synthesis via C-H bond functionalization employing 
substrates linked with various directing groups have revolu-
tionized the field of organoselenium chemistry [5, 93-97]. 
Following this logic, Yu et al. in 2015, developed an excel-
lent rhodium (III) based catalytic system to activate the C-H 
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bond functionality of arenes-bearing chelating ligands 
(Scheme 18) [98]. This site-selective ortho-selenation was 
found to be operated smoothly in the presence of the stoichi-
ometric amount of AgSbF6, NaOAc as base and tetrahydro-
furan (THF) as potential solvent. This optimized reaction 
protocol resulted in moderate yields of diaryl selenides bear-
ing electron donating and electron attracting functional 
groups at less hindered meta and para positions. Cleavage of 
activated C-H bond in the rate-determining step was also 
supported by a detailed study on the kinetic isotopic effect. 
The catalytic protocol proved to be highly advantageous due 
to the wide-ranging substrate scope with excellent functional 
group compatibility. 

 In 2016, the Zhang group employed benzeneselenyl chlo-
ride as a selenylating agent to selenate at the ortho C(sp2)-H 
bonds of arenes tethered with pyrazoles as directing 
groups.26 in the presence of stoichiometric quantity of 
Cu(OAc)2 additive and hexafluoroisopropanol (HFIP) sol-
vent, the ruthenium-promoted selenylation reaction was 

thought to undergo smoothly to deliver a bunch of ortho-
selenylated products in 65-96% yields (Scheme 19). Moreo-
ver, the catalytic method showed notable functional group 
compatibility and broad substrate scope under mild reaction 
criteria. The authors additionally reported the late-stage 
selenylation of potentially bioactive estrone derivative or 
clinically prescribed antidepressant drug to be acting as a 
selenylating agent. The mechanistic study unveiled that the 
interaction of 1-phenylpyrazole with the active catalyst 19A 
delivered the ruthenated complex 19B which, after ortho C-
H bond cleavage, furnished five-membered ruthenacycle 
19C. In path, a, interplay of 19C with PhSeCl and subse-
quent Se-Cl bond cleavage led to the formation of 19E. 
However, in path b, the formation of 19E was favoured by 
oxidative addition of PhSeCl with 19C followed by reduc-
tive elimination. 19E, upon treatment with Cu(OAc)2 re-
leased the desired selenylated product with the regeneration 
of Ru(II) catalyst to be employed for the next catalytic cycle. 
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Scheme 18. Rh-catalyzed ortho-C-H selenylation of arenes with PhSeCl. 
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Scheme 19. Ruthenium catalyzed direct selenylation of arenes with PhSeCl. 

 In the same year, Mandal and co-workers successfully 
designed a Cu(II) catalytic system to explore the N-directed 
ortho-C-H selenylation of arenes and heteroarenes in the 
presence of Ag2CO3 as an additive [99]. A good to excellent 
yields were afforded when a series of aryl and heteroaryl 
substituted amide derivatives assisted by 8-aminoquinoline 
auxiliary was subjected to couple with diaryl/heteroaryl 
diselenides (Scheme 20). Under the optimized protocol, ben-
zamides tethered with various electron-poor and electron-
rich groups were well tolerated; however, the electron-
donating substrates displayed better performances to furnish 
the desired yields. Moreover, the reaction delivered monose-
lenylated products when either one ortho-position was 
blocked or there was a meta-substituted bulky group. The 

proposed mechanism illustrated that coordination between 
the substrate (20A) and Cu(II) furnished the intermediate 
20B which, upon C-H activation gave 20C. Thereafter, 20C 
was oxidized by diselenide to form the active species 20D 
which, after reductive elimination delivered the monose-
lenylated product (20E). Subsequently, 20E would partici-
pate in the next catalytic cycle to generate the diselenated 
product (20F). 

 Later on, Jana and research colleagues designed a man-
ganese-copper dual catalytic protocol to develop a chelation-
guided direct C(sp2)-H selenylation of arene and heteroarene 
derived benzamide analogues under an air atmosphere at 
80oC heating [100]. This synthetic method was operationally 
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simple and gram-scalable, displayed good compatibility over 
a broad range of electron-rich as well as electron-deficient 
functional groups. It is worth mentioning that the presence of 
meta substituted -CF3 and -Me group was likely to elucidate 
the chemo- and regioselectivity of C-H functionalization by 
affording both mono- and diselenylated products (Scheme 
21). Interestingly, the quinoline-based directing group could 
readily be deprotected and thus resulting ortho-selenylated 
benzoic acid. Moreover, the proposed catalytic route was 

also found to be in accordance with the literature precedents. 
Initially, the 8-quinoline anchored benzamide coordinated 
with Cu(OAc)2 to furnish the intermediate 21A, which un-
derwent ortho-C-H bond insertion to produce 21B. Next, 
21B, upon disproportionation or oxidation, yielded Cu(III) 
pincer complex 21C. Subsequent reductive elimination of 
21C released the desired product and Cu(I) species. Mean-
while, Cu(I) upon oxidation resulted in the Cu(II) species 
completing the catalytic path. 

O

N

H
N

H

H
Cu(OAc)2 (20 mol%)

Ag2CO3 (1 equiv.)

KF (1 equiv.)

DMSO, 80oC, 48 h

N

O

H
N

SeR'

SeR'

N
H

O

N

PhSe

SePh
MeO

20a

N

O

H
N

PhSe

SePh

20b

N

N
H

O

N

Se

Se

R

R'
Se

Se
R'

R

R= functional groups, R' = aryl, heteroaryl

N
H

O

N

PhSe

SePh
Cl

20c

N

N
H

O

N

Se

Se

S

S

20d 20e 20f

N
H

O

NS

Se

Cu(I)

CuX2

[O]

complexation

N
H

O

N
R

H

N

O

N
H

CuII

X 20B

HX

C-H activation

N

O

NCuII

20C

N

O

NCuIII

20D

disproportionation
or oxidation

R'SeSeR'

SeR'

reductive
elimination

N
H

O

N

H

SeR'

cycle 1

cycle 1
R = H

N
H

O

NSeR'

SeR'

Plausible Reaction Mechanism

HX

20E

20A
20F

20

Br

Br

F3C

45 82%

S

 

Scheme 20. Copper catalyzed selenylation of 8-aminoquinoline assisted (hetero)arenes with diselenides. 
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Scheme 21. Dual Cu-Mn catalyzed direct C-H selenylation of arenes and heteroarenes. 

 Ackermann’s research group documented an easy and 
efficient catalytic route for the synthesis of ortho-silylated 
anilides via ruthenium(II)-promoted C-H functionalization 
reaction.94 It is worth noting that anilides decorated with 

both electron-poor and electron-rich substituents at the para 
position reacted smoothly with diselenides to afford a wide 
range of monoselenylated products in good to excellent 
yields (Scheme 22). The optimized synthetic protocol could 
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be employed to explore the versatility of the C-H functional-
ization with a broad substrate scope, excellent functional 
group compatibility and chemo- and regioselectivity. A de-
tailed study on kinetic isotope effect truly confirmed the re-
versibility of the C-H activation step. 

 Qiao et al. [101] designed and established a novel ruthe-
nium-based catalytic pathway to selenate at the ortho posi-
tion of benzaldehyde derivatives bearing benzidine as transi-
ent directing group. It is worth noting that aromatic alde-
hydes with well-tolerated electron deficient substituents were 
selectively monoselenated and afforded good yields of prod-
ucts (Scheme 23). However, the protocol was found to be 
completely insensitive towards C-H selenylation for pyrrole 
and furan systems under standard reaction condition. The 
authors also proposed a plausible reaction mechanism to 
clarify the catalytic route. Condensation between aldehyde 
23A and transient direction group (TDG) resulted in the 
imine 23B, which underwent palladation via C-H bond func-
tionalization to form the intermediate 23C. Thereafter, 23C, 
upon oxidative addition with diselenides furnished Pd(IV) 
species 23D, which subsequently underwent reductive elimi-
nation to produce Pd(II) species 23E and desired ortho-
selective imine 23F. Hydrolysis of 23F delivered the ex-
pected ortho-selenylated aryl aldehyde (23). Treatment of 
23E with AcOH led to the regeneration of active Pd(OAc)2 
catalyst at the cost of PhSeH formation. In an another route 
b, the species 23C reacted with benzeneselenol (PhSeH) 
obtained from route a, to generate palladacycle species 23H, 
which followed a Pd(II)-Pd(0) reductive elimination again to 
produce ortho-selenylated imine 23F. Pd(0) was further oxi-
dized to Pd (II) by CuBr2 to monitor the next catalytic cycle. 

 In 2019, a novel and unprecedented ruthenium(II) pro-
moted catalytic protocol performing ortho-C(sp2)-H selenyl-
ation of benzamide derivatives was successfully designed by 
Ma and co-workers [102] The optimized reaction proceeded 
smoothly in the presence of silver additives in 2,2,2-
trifluoroethanol (TFE) solvent under an argon atmosphere. 
The benzamides were functionalized with Ar2Se2 to afford 
the desired ortho-seleno ethers in good to excellent yields 
(Scheme 24). Interestingly, diaryl diselenides owning elec-
tron-rich substituents showed no compatibility with this re-
action. The authors employed a series of competition exper-
iments to reveal the higher reactivity of electron-rich ben-
zamides in comparison to electron-poor partners, indicating 
the involvement of a base-mediated intramolecular electro-
philic substitution (BIES) at the C-H bond activation step 
event. Moreover, the H/D exchange experiment in CD3OD 
as a co-solvent indicated that the C-H bond activation step 
was reversible under the optimized reaction conditions. Ini-
tially, the catalytic cycle started with the formation of an 
active cationic Ru(II) intermediate 24A, which initiated the 
reversible C-H bond activation of benzamide to afford the 
cycloruthenated species 24B. Coordination of 24B with di-
aryl diselenide delivered the Ru(IV) species 24F which, after 
reductive elimination, released the desired product and 
Ru(II) species 24C. Alternatively, intermediate 24B reacted 
with diaryl diselenide to furnish the desired product along 
with the Ru(II) species 24C. Thereafter, 24C could interact 
with benzamide via the second C-H activation step to furnish 
the cycloruthenated benzamide 24D, which subsequently un-
derwent reductive elimination to generate the Ru(I) species 
24E. Finally, the oxidation of 24E by AgOAC regenerated the 
active catalyst 24A and completed the catalytic cycle. 
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Scheme 22. Ruthenium catalysed direct C-H selenation of anilides. 
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Scheme 23. Palladium catalysed C-H selenation of benzaldehyde derivatives with Ph2Se2. 
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Scheme 24. Ru(II) mediated C-H selenylation of benzamide derivatives with Ar2Se2. 

 In a different study, Hu et al [103]. assembled diaryl 
diselenides and 2-aryl acetamides anchored with a remova-
ble 8-aminoquinoline auxiliary to design a novel and facile 
synthesis of unsymmetrical seleno ethers in excellent yields 
(Scheme 25). After the screening of various representative 
oxidants and solvents, Ag2CO3 as oxidant and DMF as sol-
vent turned out to show better performance to promote the 
palladium assisted selenylation reaction. The gram scalabil-
ity, regioselectivity and a broad range of functional group 
tolerance also facilitated the catalytic transformation. The 
authors also proposed that a SET-induced radical type mech-
anism was likely to be operating in the selenylation process. 
Coordination of Pd catalyst with N, N-bidentate ligand fur-
nished a cyclopalladated species 25A. Oxidation of 25A by 
selenyl radical produced palladium (III) intermediate 25B, 
which upon reductive elimination, delivered the desired or-
tho-selenylated yield.  

 Owing to robustness and versatility, Ru-catalysis in di-
rect C-H selenylation has attained attractive interest to re-
searchers. Of this particular interest, Bag et al., by their in-
spiring research work, demonstrated the ruthenium metal 
assisted ortho selective C(sp2)-H functionalization reaction 
of arenes tethered to 7-azaindoles with diselenides under air 
atmosphere (Scheme 26) [104]. This BINOL ligand modu-
lated catalytic protocol proceeded smoothly in the presence 
of Ag2CO3 oxidant, AgSbF6 additive in toluene at 100oC. 
The diselenide analogue bearing various electron withdraw-
ing and electron donating substituents underwent coupling at 
the activated C-H centre of N-phenyl-7-azaindole and mon-
oselenation was found as a sole product. The authors also 
elucidated the large scalability and regioselectivity of the 
reaction with wider substrate scope and excellent functional 
group tolerance. 
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 Thereafter, Nguyen and Daugulis derived aryl selenides 
by assembling commercially available diphenyl diselenides 
and N-aminopyridinium ylide in the presence of potassium 
persulfate (K2S2O8) and hexafluoroisopropanol (HFIP) sol-
vent under 110oC heating [105]. This copper catalyzed ortho 
selenylation at activated C(sp2)-H centre was found to afford 
good to moderate to yields (Scheme 27). Interestingly, the 

ylide anchored with meta substituted -CH3 group furnished a 
substantially higher percentage of yield, whereas m-
substituted -CF3 group decreased the rate of reaction. The 
regioselectivity of the C-H activation was also tested by 
lessening the reaction temperature and loading of diphenyl 
diselenide. 
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Scheme 25. Pd-catalyzed direct selenylation of differently substituted 2-aryl acetamides. 
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Scheme 26. Ru(II) catalyzed selenylation of N-phenyl-7-azaindoles with diaryl diselenides 
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Scheme 27. Copper catalyzed direct C-H selenylation of N-aminopyridinium ylides with Ph2Se2. 
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Scheme 28. Copper catalyzed direct selenylation of aniline derivatives. 

2.7. Meta Selective C-H Selenylation 

 To the best of our knowledge, no research is to be report-
ed on transition metals mediated chelation guided direct me-
ta-C-H selenylation. 

2.8. Para Selective C-H Selenylation 

 Alves and the research team developed an atom-
economical and appropriate catalytic protocol to derive ar-
ylselanyl anilines in DMSO solvent at 110oC heating under 

air atmosphere [105, 106]. The cleavage of C-H bond of sub-
stituted aryl amines followed by the formation of C-Se func-
tionality was found to be improved by employing CuI salt 
and thus a library of para-selenylated anilines was afforded 
in good yields (Scheme 28). The regioselectivity, ample sub-
strate scope and excellent compatibility by various electronic 
substituents on both diaryl diselenide and aniline moiety also 
enriched the synthetic strategy. A plausible mechanism in-
volving Cu(I)/Cu(III) catalytic cycle revealed that coordina-
tion between diaryl diselenide and CuI furnished a Cu(III) 
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anchored tetracoordinate species 28A. Now N, N-dialkyl 
aniline, through its para-position, interacted with the inter-
mediate 28A to generate 28B, which after reductive elimina-
tion resulted in an intermediary iminium salt 28C and an 
anionic species 28D. Deprotonation of 28C would release 
the desired selenylated product along with the formation of 
arylselenol (ArSeH) which on exposure with air and DMSO 
regenerated CuI and Ar2Se2. 

 In 2022, Beletskaya and Ananikov introduced an exhaus-
tive study on the transition metals catalyzed C-Z bond for-
mations (Z = S, Se and Te) under various catalytic protocols 
[107]. It is worth mentioning that higher atom economy, 
environmental concerns, higher selectivity, and conversion 
yields with respect to the catalytic transformations made this 
study more acceptable to the researchers. 

 Recently in 2023, Kong and co-workers designed and 
developed a terminal group-oriented self-assembly strategy 
for the preparation of a homogeneous layered SnSe2 and 
MXene heterostructure (LBL-SnSe2@MXene) [108]. The 
authors also explained the massive applications of these syn-
thesized heterostructured materials in the area of pho-
to/electrocatalysis, rechargeable batteries and supercapaci-
tors.  

CONCLUSION 

 In summary, significant advances have been achieved in 
the area of chelation-guided transition metals mediated direct 
chalcogenation of activated C-H bond functionalities over 
the current ten years. Different nitrogen-based monodentate 
and bidentate auxiliaries have been effectively designed as 
active directing groups to address the site-selective synthesis 
of thioethers, sulfones and selenoethers. In contrast, the co-
ordination of transition metal salts with the monodentate 
and/or bidentate chelating ligands has developed an innova-
tive approach for the synthesis of C-S/Se motifs via C-H 
bond cleavage. We believe this review article could render a 
comprehensive and informative outline on this current issue 
and motivate researchers to design new and straight forward 
catalytic protocols. 

LIST OF ABBREVIATIONS 

BIES = Base-mediated Intramolecular Electro-
philic Substitution 

DFT = Density Functional Theory 

DG = Directing Groups 

DMSO = Dimethyl Sulfoxide 

HFIP = Hexafluoroisopropanol 

PyO = Pyridine-N-oxide 

SET = Single Electron Transfer 

TBHP = tert-butyl Hydroperoxide 

TC = 2-thiophenecarboxylate 

TDG = Transient Direction Group 

TEMPO = (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

TFE = 2,2,2-trifluoroethanol 

THF = Tetrahydrofuran 

TosMIC = p-Tosylmethyl Isocyanide 
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